Magnetastico® | 3 sztuki magnesów neodymowych N35 z oczkiem 20 mm Ø | siła przyczepności 9,0 kg | 3 sztuki magnesów neodymowych z oczkiem lub śrubą pierścieniową bardzo mocna i ocynkowana : Amazon.pl: Narzędzia i renowacja domu Czemu neodymowe magnesy? Czym się one wyróżniają? Aktualnie produkuje się magnesy neodymowe przede wszystkim w krajach azjatyckich. Największym producentem oraz dostawcą tego typu produktów stały się Chiny, ze względu na kontrolę nad większością globalnych zasobów pierwiastków ziem rzadkich. W przemysłowej produkcji magnesów o dużej mocy zastosowanie znalazły głównie dwa związki: Sm2Fe17N2 oraz Nd2Fe14B. Są to magnesyoparte o neodym i magnesy posiadające strukturę nanokrystaliczną, charakteryzujące się nie tylko dużym stopniem namagnesowania, lecz również dużą remanencją magnetyczną. Zastosowanie magnesów o dużej mocy jest naprawdę szerokie. Podstawowymi grupami odbiorców zostały firmy produkcyjne, tworzące urządzenia elektroniczne i elektryczne, zwłaszcza firmy zajmujące się motoryzacją, wykorzystujące wydajne hybrydowe i elektryczne silniki. Przy wytwarzaniu takich silników wykorzystywane są neodymowe magnesy ze stopu ze związkami redukujący spadki związane z wydajnością magnesów w wysokich temperaturach takimi jak na przykład dysproz (Dy) czy Terb (Tb). Dzięki użyciu wymienionych wyżej substancji, poprawiono w znacznym stopniu magnetyczną koercję, a także ogólną wydajność silnych magnesów wykorzystywanych w urządzeniach elektrycznych o dużej mocy nominalnej. Na terenie Stanów Zjednoczonych już od dawna realizowane są specjalistyczne badania przez powołany specjalnie do takich celów Instytut Rare Earth Alternatives in Critical Technologies (REACT), zajmujący się opracowywaniem nowoczesnych stopów. Przed kilku laty ARPA-E desygnowała prawie 32 miliony dolarów na finansowanie zaawansowanych projektów w zakresie programu Rare-Earth Substitute, czyli możliwości opracowania związków mogących zastąpić metale ziem rzadkich jako zastępstwo dla naturalnych złóż pierwiastków, kontrolowanych przez rząd magnesów na bazie neodymu oparte zostało na dwóch metodach. W Japonii używano metody spiekania proszków, a w USA popularność zdobyła technika oparta na szybkim chłodzeniu. Zależnie od oczekiwań i potrzeb, neodymowe magnesy wytwarza się poprzez zastosowanie innych domieszek, między innymi miedzi, aluminium czy galu. Przez takie domieszki można korygować właściwości magnetyczne magnesu, jego zakres wytrzymałości, a także odporność na wysokie temperatury . Da się nawet spowodować, że magnes wykaże dużą odporność na działanie na szkodliwe warunki atmosferyczne, na przykład wodę, która powoduje korodowanie żelaza. Natomiast ciągłe ulepszanie procesów metalurgicznych doprowadziło do opracowania różnych materiałowych stopów, które w znaczący sposób wpłynęły na podwyższenie temperatury Curie. Wyprodukowany w nowoczesnym procesie produkcji neodymowy magnes, może uzyskać poziom namagnesowania przekraczający 1,6T, czyli o wiele wyższe choćby od pola emitowanego przez Ziemię. Magnesy neodymowe to na dzień dzisiejszy najsilniejsze magnesy, jakie do tej pory stworzono. W 1990 roku w dublińskim instytucie Trinity College Michaelowi Coeyowi udało się stworzyć nieznany do tej pory materiał magnetyczny mający wzór Sm2Fe17N2. Jego proces wytworzenia opierał się o syntezę drobnego proszku samaru i żelaza, które podczas prasowania w silnym polu magnetycznym wraz z domieszką azotu, osiągnęły zakres temperatury Curie wynoszący 470oC oraz namagnesowanie w okolicach 0,9T. Nie jest to wynik zbliżony do poziomu neodymowych magnesów, jednak nowo opracowany materiał znacząco przewyższał pierwsze z produkowanych magnesów. Ostatnie lata minionego wieku przyniosły kolejne odkrycia w zakresie magnesów o dużej mocy oraz technik ich tworzenia. Opracowany został nano-krystaliczny materiał magnetyczny, złożony z mikroskopijnych ziaren o wielkości mniejszej niż 100 nm. Nowo odkryte ziarna nano-kryształów, w przeciwieństwie do monokryształów oddzielone są od siebie przestrzenią o dużo większej mocy powierzchniowej oraz mniej uporządkowanej strukturze. Dzięki wykorzystaniu, na etapie produkowania mieszaniny pierwiastków z grupy ziem rzadkich razem z żelazem, cechują się wysoką remanencją magnetyczną. Świetne właściwości magnetyczne biorą się też z jednego ważnego czynnika, to znaczy połączenia magnetycznych momentów żelaza oraz neodymu. Daje to świetne namagnesowanie przedstawianych magnesów. Przede wszystkim głównymi odbiorcami mocnych magnesów są firmy produkujące urządzenia pomiarowe, elektroniczne, elektryczne, podmioty zajmujące się motoryzacją czy też dostarczające rozmaite maszyny przemysłowe. Zalety magnesów dużej mocy ceni też od dawna branża meblowa, oferująca odzież, szczególnie związana z odzieżą medyczną, firmy wytwarzające zapięcia do portfeli i torebek oraz rzecz jasna szeroko pojęta reklama. Silne magnesy oparte na neodymie - historia powstania. Podczas kiedy projektowano coraz to nowe silne magnesy wykorzystujące samar, w 1983 roku zostały odkryte interesujące cechy związku neodymu w połączeniu z żelazem i stalą. Amerykańska firma GM rok po odkryciu stworzyła nowy związek o wzorze Nd2Fe14B, mające skład 6% boru, 15% neodymu i ponad 70% żelaza. Technologia tworzenia magnesów neodymowych o dużej mocy polega na dwóch metodach. Japoński zakład Sumitomo, znajdujący się w strukturach Hitachi, analogicznie jak w przypadku silnych magnesów produkowanych z samaru, używał metody spiekania materiałów w formie proszku, dzięki czemu uzyskiwano magnes o pełnej gęstości. W USA neodymowe magnesy produkowano w zakładach firmy GM metodą bardzo szybkiego schładzania roztopionego proszku izotropowego. Z jakich powodów połączenie neodymu z żelazem i borem dało znacznie lepsze rezultaty? Wykorzystanie neodymu znacznie mniej kosztowało, niż w przypadku samaru, a oprócz tego neodym posiada lepsze właściwości magnetyczne. Ale temperatura Curie tego pierwiastka była zdecydowanie za niska, z tego też powodu zdecydowano się na podwyższenie tejże temperatury do 530oC. Tak wysoki poziom otrzymano przez dodanie do puli składników boru. Poza tym da się też w szerokim zakresie zmieniać parametry magnetyczne, poprzez wprowadzenie do stopów innych związków, typu gal Ga, miedź Cu, niob Nb oraz glin neodymowe często posiadają także w warstwy ochronne ochraniające przed rdzewieniem oraz zabezpieczające przed szkodliwymi warunkami atmosferycznymi. Wykonuje się to przez nałożenie warstwy niklu lub miedzi np. w w wykorzystywanych do poszukiwań uchwytach, czyli silnych magnesach stosowanych do przeszukiwania dna akwenów wodnych. Cały czas są opracowywane nowe rodzaje magnesów, a dzięki postępowi w metalurgii, powstają nowe stopy metali cechujące się zwiększoną koercją, jak też magnesy o znacznie wyższej temperaturze Curie i możliwości namagnesowania stopów, większej niż 1,6Tesli. Pierwsze udokumentowane badania i testy nad nowoczesnymi materiałami jakie można by było wykorzystać do produkcji silnych magnesów miały miejsce w 1966 roku. Wtedy to właśnie naukowcy K. Strnat oraz G. Hoffer z laboratorium Air Force Materials , zaczęli badania nad magnetykami, zrobionymi z metali wchodzących w skład grupy metali ziem rzadkich. Na początku badań testowane stopy metali, jakie chciano użyć do stworzenia magnesów o dużej mocy, opierały się na bazie żelaza, kobaltu i lekkich lantanowców, do jakich można zaliczyć: neodym Nd, cer Ce, prazeodym Pr, itr Y, samar Sm oraz lantan La. Lantanowce, które zostały wymienione wykazują charakterystyczne właściwości, takie jak silne namagnesowywanie, lecz ich temperatura Crie była bardzo niska. Wytwarzane dzisiaj magnesy neodymowe o dużej sile zawierają prócz żelaza także dodatek lekkich lantanowców, zapewniając im wysoki poziom anizotropii magneto-krystalicznej, a poza tym dokłada się do nich kilka procent kobaltu w celu podwyższenia całkowitej temperatury Curie. Magnesy neodymowe udało się opracować około 50 lat temu wykorzystując samar w formie sproszkowanych ziaren wraz z kilkoma dodatkowymi lantanowcami. Wymyślony został pierwszy na świecie, potężny magnes SmCo5. Samą produkcję oparto na ukierunkowaniu ziaren sproszkowanego stopu przy udziale pola magnetycznego przy spiekaniu. Wypiekanie wyprasek odbywało się w warunkach temperaturowych około 1120oC przy końcowym wyżarzaniu w temperaturze o 250oC niższej. Finalnym z procesów produkowania mocnego magnesu było magnesowanie całości w polu magnetycznym 2T. Dzięki temu procesowi temperatura Curie prototypowego magnesu wyniosła około 745oC. Magnesy neodymowe aktualnie znajdujące się na stanie magazynowym można sprawdzić na poniższym wykazie. kształt nazwa siła (kg) długość / średnica zew. (mm) szerokość (mm) / średnica wew. (mm) wysokość (mm) energia mag. (MGOe) waga (g) powłoka kierunek magnesowania max. temp. pracy (oC) MW 100x10 100 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 100x30 100 30 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10x10 10 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10x15 10 15 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10x2 10 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10x20 10 20 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10x3 10 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10x30 10 30 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10x4 10 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10x5 10 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10x6 10 6 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10x8 10 8 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 12x1 12 1 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 12x10 12 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 12x2 12 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 12x3 12 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 12x4 12 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 12x50 12 50 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 12x6 12 6 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 12x8 12 8 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10 N38 [NiCuNi] nikiel → diametralny ≤ 80 oC MW 14x2 14 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 14x3 14 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 15x1 15 1 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 15x10 15 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 15x2 15 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 15x3 15 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 15x4 15 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 15x5 15 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 15x8 15 8 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 16x3 16 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 16x4 16 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 16x9 16 9 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10 N38 [NiCuNi] nikiel → diametralny ≤ 80 oC MW 18 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 19x4 19 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 20 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 20x18 20 18 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 20x2 20 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 20 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 20x35 20 35 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 20x5 20 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10 N38 [NiCuNi] nikiel → diametralny ≤ 80 oC MW 22x10 22 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 22x6 22 6 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 24x6 24 6 N38 [Zn] cynk ↑ osiowy ≤ 80 oC MW 25x5 25 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 25x6 25 6 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 10 N38 [NiCuNi] nikiel → diametralny ≤ 80 oC MW 10 N38 [NiCuNi] nikiel → diametralny ≤ 80 oC MW 29x10 29 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 2x10 2 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 2x4 2 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 30x5 30 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 33x10 33 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 33x30 33 30 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 35x5 35 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 38x12 38 12 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 38x15 38 15 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 38 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 3x1 3 1 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 3x2 3 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 3x6 3 6 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 40x10 40 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 40x15 40 15 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 40x30 40 30 N38 [NiCuNi] nikiel → diametralny ≤ 80 oC MW 40x8 40 8 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 45x15 45 15 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 45x20 45 20 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 45x25 45 25 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 45x30 45 30 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 45x35 45 35 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 4x10 4 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 4x4 4 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 4x5 4 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 4x6 4 6 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 4x8 4 8 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 50x20 50 20 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 55x25 55 25 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 5x1 5 1 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 5x10 5 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 5x15 5 15 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 5x2 5 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 5x25 5 25 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 5x3 5 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 5x30 5 30 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 5x4 5 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 5x7 5 7 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 6x1 6 1 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 6x2 6 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 6x3 6 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 6x6 6 6 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 70x20 70 20 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 70x30 70 30 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 70x40 70 40 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 70x60 70 60 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 7x2 7 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 80x30 80 30 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 8 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 8x15 8 15 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 8x3 8 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 8x4 8 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 8x5 8 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 8x8 8 8 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 1 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 9x3 9 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 14x10 14 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 7 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 18x10 18 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MW 12 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 100x40x20 100 40 20 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 10x10x10 10 10 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 10x10x3 10 10 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 10x10x4 10 10 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 10 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 10 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 10x7x3 10 7 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 11x11x1 11 11 1 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 12x10x4 12 10 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 13x10x5 13 10 5 38H [NiCuNi] nikiel ↑ osiowy ≤ 120 oC MPL 15x15x5 15 15 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 15x2x30 15 2 30 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 15x3x6 15 3 6 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 15x5x5 15 5 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 17x17x3 17 17 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 200x30x30 200 30 30 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 20x10x1 20 10 1 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 20x10x2 20 10 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 20x10x5 20 10 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 20x20x20 20 20 20 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 20x3x2 20 3 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 20x5x3 20 5 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 20x5x5 20 5 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 20x8x4 20 8 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 20x8x6 20 8 6 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 25x10x5 25 10 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 25 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 25x25x10 25 25 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 30x10x5 30 10 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 30x10x8 30 10 8 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 30x15x2 30 15 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 30x20x10 30 20 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 30x20x20 30 20 20 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 30x20x5 30 20 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 35x35x10 35 35 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 35x7x3 35 7 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 3x3x1 3 3 1 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 3x3x2 3 3 2 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 3x3x3 3 3 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x10x18 40 10 18 N38 [NiCuNi] nikiel → diametralny ≤ 80 oC MPL 40x10x4 40 10 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x10x4x2[7/ 40 10 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x10x5 40 10 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x15x5 40 15 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x15x5x2[7/ 40 15 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x15x6 40 15 6 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x18x10 40 18 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x18x10 SH 40 18 10 SH N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x20x10 40 20 10 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x20x4x2[7/ 40 20 4 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x20x5 40 20 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x40x15 40 40 15 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 40x7x3 40 7 3 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 42x20x5 42 20 5 N38 [NiCuNi] nikiel ↑ osiowy ≤ 80 oC MPL 45x25x10
Silnik magnetyczny Minato wykorzystuje magnetyczne odpychanie jako podstawowe źródło energii i charakteryzuje się bardzo niewielkimi stratami. Prawie nie wytwarza ciepła i jest znacznie wydajniejszy (do 330%) niż silniki konwencjonalne. Większość testowych jednostek Minato składa się z trójwarstwowego niemagnetycznego rotora
Co to są neodymowe magnesy? W pierwszej kolejności najważniejszymi odbiorcami mocnych magnesów są firmy sprzedające urządzenia elektryczne, elektroniczne, pomiarowe, podmioty zajmujące się motoryzacją oraz wytwarzające różnego rodzaju przemysłowe urządzenia. Zalety magnesów dużej mocy bardzo również ceni branża meblarska, odzieżowa, w szczególności związana z odzieżą medyczną, firmy wytwarzające zatrzaski do portfeli i torebek oraz rzecz jasna branża reklamowa. Pierwsze udokumentowane testy oraz badania nad nowoczesnymi materiałami które mogłyby się nadawać do stworzenia silnych magnesów miały miejsce w 1966 roku. Właśnie w tamtym okresie naukowcy K. Strnat oraz G. Hoffer z Air Force Materials Laboratory w Dayton, postanowili rozpocząć badania nad magnetykami, zrobionymi z metali wchodzących w skład tak zwanej grupy metali ziem rzadkich. Na początku badań testowane stopy metali, które chciano użyć do stworzenia silnych magnesów, były oparte o kobalt, żelazo oraz kilka lantanowców, w skład których wchodzą: prazeodym Pr, neodym Nd, cer Ce, lantan La, itr Y oraz samar Sm. Lantanowce, które zostały wymienione wykazywały charakterystyczne zdolności, takie jak możliwość silnego namagnesowania, ale ich temperatura Crie była bardzo niska. Wytwarzane dzisiaj silne magnesy neodymowe w swoim składzie posiadają poza żelazem również domieszkę odpowiednio dobranych lantanowców, co im zapewnia dużą anizotropię magneto-krystaliczną, a oprócz tego uzupełnia się ten skład o kobalt aby zwiększyć zbyt niską temperaturę Curie. Debiutanckie neodymowe magnesy udało się opracować na początku lat 70-tych wykorzystując sproszkowane ziarna samaru wraz z innymi lantanowcami. Wymyślony został pierwszy na świecie, potężny magnes SmCo5. Proces opierał się na zjawisku kierunkowania kryształów rozdrobnionego stopu w polu magnetycznym przy spiekaniu. Spiekanie wyprasek wykonywano w temperaturze powyżej 1100oC wraz z końcowym wyżarzaniem w temperaturze 850oC. Ostatecznym procesem produkcji magnesu neodymowego było magnesowanie całości w polu magnetycznym 2T. Przez taką technologię temperatura Curie nowatorskich magnesów została podniesiona do 745oC. Obecnie na świecie neodymowe magnesy są produkowane głównie na kontynencie azjatyckim. Podstawowym wytwórcą oraz dystrybutorem takich wyrobów są Chiny, ze względu na kontrolę nad większością pokładów niezbędnych do tego pierwiastków. Do wytwarzania przemysłowego silnych magnesów zastosowanie znalazły przede wszystkim dwa rodzaje związków: Sm2Fe17N2 oraz Nd2Fe14B. Są to magnesyna bazie neodymu i magnesy posiadające strukturę nanokrystaliczną, charakteryzujące się nie tylko wysokim namagnesowaniem, lecz także wysokim poziomem remanencji magnetycznej. Zastosowanie mocnych neodymowych magnesów jest naprawdę szerokie. Głównymi odbiorcami są podmioty z branży produkcyjnej, oferujące urządzenia elektryczne, elektroniczne, zwłaszcza firmy motoryzacyjne, wykorzystujące bardzo wydajne hybrydowe i elektryczne silniki. Do produkcji takich używa się neodymowych magnesów ze stopu z pierwiastkami redukujący spadki związane z wydajnością magnesów w podwyższonych temperaturach takimi jak na przykład dysproz (Dy) oraz Terb (Tb). Dzięki użyciu tych substancji, poprawiono w znacznym stopniu koercję magnetyczną i całościową wydajność silnych magnesów wykorzystywanych w aparaturze elektrycznej o większej mocy. Na terenie Stanów Zjednoczonych już od wielu lat prowadzi się badania przez specjalnie do tego celu powołany Instytut Rare Earth Alternatives in Critical Technologies (REACT), zajmujący się opracowywaniem alternatywnych materiałów. Przed kilku laty zostało przyznane prawie 32 miliony dolarów na wspieranie badań i projektów w zakresie programu Rare-Earth Substitute, czyli możliwości stworzenia związków mogących zastąpić metale ziem rzadkich jako zastępstwo dla naturalnych pokładów pierwiastków, kontrolowanych przez rząd magnesów neodymowych jest oparte na dwóch metodach. W Japonii używano metody spiekania proszków, a na terenie Stanów popularność zyskała technika opierająca się o szybkie chłodzenie. W zależności od wymagań, magnesy z neodymu można również wytwarzać przy użyciu innych domieszek, na przykład miedzi, aluminium czy galu. Przez takie domieszki da się w znacznym stopniu korygować magnetyczne właściwości samego magnesu, jego wytrzymałość oraz możliwość pracy w wysokich temperaturach . Można nawet spowodować, że magnes wykaże dużą odporność na atmosferyczne warunki, w tym wodę, która powoduje korozję. Natomiast systematyczne doskonalenie procesów metalurgicznych doprowadziło do otrzymania nowych stopów, które wpłynęły znacząco na podwyższenie tak zwanej temperatury Curie. Wytwarzany nowoczesną metodą produkcyjną magnes neodymowy, osiąga namagnesowanie na poziomie 1,6T, czyli o wiele wyższe na przykład od pola emitowanego przez Ziemię. Magnesy neodymowe to dziś najmocniejsze rodzaje magnesów, jakie do tej pory stworzono. Pod koniec XX wieku w Trinity College w Dublinie Michae Coey opracował zupełnie nowy magnetyczny stop wzorze chemicznym Sm2Fe17N2. Jego proces wytworzenia wykorzystywał syntezę proszków samaru i żelaza, które poddane sprasowaniu w polu magnetycznym o dużej mocy wraz z dodatkiem azotu, uzyskały zakres temperatury Curie wynoszący 470oC i namagnesowanie w okolicach 0,9T. Nie osiągnięto tu wprawdzie parametrów neodymowych magnesów, jednak wymyślony stop znacząco przewyższał pierwsze magnesy oparte o ten pierwiastek. Koniec XX wieku przyniósł dalsze pomysły w dziedzinie magnesów o dużej sile oraz technik ich produkowania. Opracowany został materiał i strukturze nano-krystalicznej, składający się z ziaren o wielkości mniejszej niż 100 nm. Nowo odkryte ziarna nano-krystaliczne, w odróżnieniu od do monokryształów są od siebie oddzielone o wiele większymi granicami o wyższej mocy powierzchniowej i bardziej nierównomiernej strukturze wewnętrznej. Poprzez zastosowanie, podczas produkowania stopów pierwiastków z rodziny ziem rzadkich w połączeniu z żelazem, cechują się remanencją magnetyczną na wysokim poziomie. Takie doskonałe magnetyczne właściwości wynikają również z jeszcze jednego aspektu, czyli połączenia magnetycznych momentów neodymu i żelaza. Daje to bardzo dobre magnesowanie magnesów neodymowych. Silne magnesy neodymowe - jak powstały. Podczas kiedy projektowano następne magnesy o dużej mocy oparte o samar, w 1983 roku odkryto interesujące cechy związku neodymu w połączeniu z żelazem i stalą. Amerykańska firma GM rok po odkryciu stworzyła związek o wzorze Nd2Fe14B, w proporcji 15% neodymu, 6% boru i ponad 70% żelaza. Technologia tworzenia mocnych neodymowych magnesów opiera się na dwóch metodach. Zakład Sumitomo z Japonii, będący w grupie Hitachi, analogicznie jak w przypadku silnych magnesów produkowanych z samaru, stosował metodę spiekania odpowiednio przygotowanego proszku, przez co otrzymywano magnes o pełnej gęstości. W Ameryce neodymowe magnesy były tworzone w firmie General Motors techniką bardzo szybkiego ochładzania roztopionego proszku izotropowego. Czemu połączenie neodymu z żelazem i borem dało znacznie lepsze rezultaty? Wykorzystanie neodymu było znacznie tańsze, niż samar, a dodatkowo neodym posiada lepsze właściwości magnetyczne. Ale temperatura Curie tego pierwiastka była znacznie niższa, z takich też powodów postanowiono podnieść tę temperaturę do 530oC. Taką wartość otrzymano przez dodatek do składu magnesu neodymowego domieszki boru. Poza tym można też w pewien sposób modyfikować charakterystykę magnetyczną, poprzez wprowadzenie do magnesu innych związków, takich jak gal Ga, miedź Cu, niob Nb i aluminium magnesy mogą zostać również wyposażone w warstwy ochronne chroniące przed korozją i mające zabezpieczające działanie przed szkodliwymi warunkami atmosferycznymi. Wykonuje się to przez dołożenie cieniutkiej warstwy niklu lub miedzi na przykład w uchwytach magnetycznych do poszukiwań, to znaczy silnych magnesach używanych przy przeszukiwaniu dna jezior, rzek i mórz. Inżynierowie cały czas opracowują bardziej zaawansowane magnesy neodymowe, a dzięki ciągłym badaniom w technologii metalurgicznej proszków, powstają nowe stopy metali o podwyższonej koercji, jak również magnesy dysponujące znacznie wyższą temperaturą Curie oraz możliwości namagnesowania stopów, przekraczające 1,6Tesli.
Magnesy neodymowe. MPŁ 100x40x20 N42 Magnes neodymowy płytkowy. Wymiar: 100x40 mm Wysokość: 20 mm Materiał: N52 magnesowany wzdłuż wysokości. Wysyłka w: 24 godziny. 380,00 zł. Cena netto: 308,94 zł. Do koszyka. MPŁ 10x10x4 N38 Magnes neodymowy płytkowy. Wymiar: 10x10 mm Wysokość: 4 mm Materiał: N38 magnesowany wzdłuż wysokości.
Już parę lat temu kupiłam sobie zestaw magnesów neodymowych. W sumie świetna zabawa i pozwala na pobudzenie wyobraźni przestrzennej. Co jest fajne? Właściwie to możesz z nich zrobić wszystko, ogranicza Cię właściwie tylko ilość elementów w zestawie. Magnesy neodymowe – kulki magnetyczne? Do wyboru, do koloru – jest tego pełno. Można kupić kulki małe, średnie czy duże. Srebrne, kolorowe fosforyzujące. Warto na pewno zapoznać się ze specyfikacją co do siły przyciągania. Tu zaznaczę, że jest to przydane. Czym jest magnes neodymowy? Magnes neodymowy jest to trwały i najsilniejszy rodzaj magnesu. Wytwarzany jest z połączenia neodymu, żelaza i boru. Mają ogromną moc przyciągania, im większy magnes, tym większa moc. Świetnie sprawdzają się przy w elektronice np. w dyskach twardych lub w wykrywaczach metali. Maksymalna temperatura w jakiej mogą pracować magnesy neodymowe to 220 stopni. Powyżej 300 stopni ulegną rozmagnesowaniu, także wystarczy do zabawy 😉. Czy magnes neodymowy traci swoje właściwości? Jeśli chodzi o spadek mocy to nie spodziewałabym się, że to szybko nastąpi. Magnesy neodymowe tracą około 1% swoich właściwości magnetycznych w trakcie 10 lat. W sumie mój zestaw mam przez chyba 6 lat i nie zauważyłam, żadnego spadku mocy. Ale pewnie tego 1% uszczerbku, to bym nie dopatrzyła. Jaki jest minus rozrywkowych magnesów neodymowych? Dużo minusów nie ma, jednak podam ten, na który najbardziej zwróciłam uwagę. Mianowicie, po pewnym czasie, pod wpływem tarcia, zaczynają tracić kolor. Nie byłoby to nawet problematyczne, gdyby nie to, że kolor zostaje na Twoich rękach. Gdzie można znaleźć inspiracje? Polecam kilka bardzo fajnie zrobiony kanał na YouTube – Magnetic Games. Są to dość krótkie filmiki, pokazujące niesamowite budowle. No i oczywiście, autor może się pochwalić dość pokaźna kolekcją magnesów neodymowych. Wszystko w różnych kształtach, wielkościach i kolorach. No i w sumie nie ogranicza się tylko do samych budowli 😉. Co jest wyzwaniem przy budowaniu z magnesów neodymowych? Szczerze, to na zdjęciach i filmikach wszystko wygląda pięknie i prosto. Gorzej, jak starasz się połączyć to co na filmikach z praktyką. Wtedy już nie zawsze jest kolorowo. Problemy są oczywiście, bo magnesy się bardzo łatwo przyciągają. Niestety dla Nas, nie zawsze tak jak byśmy tego chcieli 😉. Kolejny problem, jak już ułożysz sobie większość elementów i tu nagle, na samym końcu jeden element się rozjedzie. Plus jest taki, że w wielu przypadkach nie trzeba rozpoczynać wszystkiego od nowa. Magnesy neodymowe – co warto sprawdzić przed zakupem? Na pewno polecam sprawdzić, czy zawierają atesty i certyfikaty np. CE, czy EN 71. Wiadomo, lepiej wiedzieć z czym będziesz mieć styczność. Oczywiście, wszystko zależy od przeznaczenia. Niektóre elementy mogą być bardzo malutkie. W takim przypadku należy uważać, zwłaszcza na dzieci. Warto sprawdzić zalecenia co do minimalnego wieku. Magnesy neodymowe – powodzenia w budowaniu Poza tym, że jest to ciekawe, ale też dość angażujące zajęcie, to można się zatracić w czasie. Na pewno udane skończenie budowli cieszy. Ale powiem, z własnego doświadczenia, że nie zawsze wszystko wychodzi. To może powodować lekkie frustracje, ale nie ma co się załamywać. Tak to jest z praktyką, im jej więcej tym lepsze efekty. A nie powiem, wychodzą z tego ciekawe rzeczy. W sumie na ten temat nie ma co się dużo rozpisywać. Widzieliście co udało mi się zbudować z małego zestawu 216 okrągłych magnesów neodymowych. Następnym razem będą zdjęcia z innymi elementami, będą nie tylko kulki magnetyczne. Udanej zabawy

W tym celu należy zestawić układ złożony z czterech walcowych magnesów neodymowych, umieszczonych obok siebie w narożnikach kwadratu. Magnesy powinny być zwrócone na przemian biegunami różnoimiennymi w tę samą stronę. Jest to tzw. układ Hallbacha. Dla płatka grafitu o rozmiarach 5×5 mm optymalne okazały się magnesy neodymowe

Magnes neodymowy - co przyciąga? Regularnie powtarzanym pytaniem, w kontekście wykorzystania magnesów neodymowych, jest hasło: “Jakie metale przyciąga magnes neodymowy?”. W praktyce wykorzystując magnes neodymowy np. do połowów lub poszukiwań, najczęściej spotykamy się ze znaleziskami w postaci ferromagnetyków miękkich. Są to wszystkie metaliczne obiekty, które magnes neodymowy przyciąga i które po oderwaniu od magnesu nie wykazują dalszych właściwości magnetycznych (ewentualnie krótkotrwałe namagnesowanie resztkowe). Nazwa ferromagnetyki wywodzi się od głównego składnika ferromagnetyków – żelaza (Fe), które charakteryzuje się bardzo wysoką podatnością magnetyczną (w układzie SI wielkość fizyczna bezwymiarowa; określa łatwość, z jaką dana substancja ulega namagnesowaniu pod wpływem zewnętrznego pola magnetycznego). Ze wszystkich pierwiastków, najwyższą podatnością magnetyczną, na poziomie 2×10^7, charakteryzuje się żelazo rodzime (żelazo metaliczne). Jest to minerał niezwykle rzadki i dostarczany na Ziemię wraz z upadkami meteorytów. Bardzo szybko podlega procesom chemicznym, w tym procesom utleniania, dlatego jest tak unikalny. Żelazo w przyrodzie występuje głównie w postaci tlenków, węglanów, wodorotlenków i siarczków. To stosowane w przemyśle, także do produkcji magnesów neodymowych, charakteryzuje się podatnością magnetyczną o wartości do 10^6. Poza żelazem, do podstawowych ferromagnetyków zalicza się nikiel (Ni) i kobalt (Co), a także następujące pierwiastki ziem rzadkich: gadolin (Gd), dysproz (Dy), holm (Ho) i terb (Tb). W życiu codziennym pierwiastki te rzadko występują w formie czystej. Znacznie częściej w formie stopów, bo to ze stopów powstają przedmioty powszechnego użytku. Do najpopularniejszych stopów ferromagnetycznych należą stopy żelaza i węgla (np. stal, elementy stalowe, blachy stalowe), stopy żelaza i krzemu (np. blachy elektrotechniczne), stopy żelaza i niklu (np. permalloy), stopy żelaza i kobaltu (np. perminwar). Wszystkie one są dobrze przyciągane przez magnesy neodymowe. Własności ferromagnetyczne wykazują nie tylko stopy pierwiastków ferromagnetycznych, ale również ferromagnetycznych z nieferromagnetycznymi, a także stopy samych pierwiastków nieferromagnetycznych (np. Cu2MnAl należący do tzw. stopów Heuslera). W ten sposób, pierwiastki ziem rzadkich, będące paramagnetykami, takie jak: neodym (Nd), prazeodym (Pr), erb (Er), samar (Sm), tul (Tm), pomimo iż same nie wykazują zdolności do namagnesowania, w połączeniu z innymi pierwiastkami, mogą stać się ferromagnetykami, w tym ferromagnetykami twardymi, z których mogą powstać magnesy. Z takim właśnie zjawiskiem mamy do czynienia w przypadku magnesów neodymowych, gdzie z połączenia pierwiastków: paramagnetycznego neodymu (Nd), ferromagnetycznego żelaza (Fe) oraz diamagnetycznego boru (B), otrzymujemy najsilniejszy stop ferromagnetyczny – magnes neodymowy – o wzorze chemicznym Nd2Fe14B. Oprócz wymienionych pierwiastków istnieją także, mniej popularne, ceramiczne materiały magnetyczne tzw. ferrimagnetyki. Analogicznie jak w przypadku ferromagnetyków, wyodrębnia się ferrimagnetyki miękkie oraz twarde. Miękkie znajdują przede wszystkim zastosowanie jako rdzenie transformatorów, cewki strojeniowe, dławiki, filtry czy elementy pamięciowe. Twarde ferrimagnetyki (np. ferryt kobaltowy CoFe2O4) są stosowane m. in. w nośnikach zapisu magnetycznego, gdzie wysoka koercja pozwala im zachować stan namagnesowania, a tym samym odczyt danych. Na co dzień ferrimagnetyki twarde spotykamy także w postaci magnesów na lodówkę oraz magnesów głośnikowych. Do ferrimagnetyków należą także, otrzymywane drogą spiekania proszków materiałów ceramicznych, ferryty, a ich najpopularniejszym, naturalnym przedstawicielem jest magnetyt Fe3O4. Charakteryzują się one wysoką rezystywnością elektryczną. Jednym z głównych odbiorców ferrytów jest przemysł radiowy. Występują również powszechnie w elektronice przemysłowej, przemyśle motoryzacyjnym, silnikach prądu stałego, urządzeniach AGD oraz zabawkach. Dlatego w kontekście tytularnego pytania niniejszego artykułu, dostajemy szeroką listę przedmiotów / materiałów / elementów codziennego użytku, które mogą być przyciągnięte przez magnes neodymowy. Zastosowanie magnesów neodymowych w zaawansowanej elektronice jest bardzo popularne ze względu na wysoką moc magnetyczną i wyjątkową wydajność. Magnesy neodymowe mają najwyższą dostępną gęstość energii magnetycznej , z wartością BHmax rzędu od 30 MGOe do 52 MGOe. Masz pytania? Zadzwoń +48 22 499 98 98 Zamówienia złożone przed godziną 13oo w dni robocze, wysyłane tego samego dnia select-currency select-lang Magnes - zastosowania. Płytkowy kształt magnesów neodymowych znajduje swoje zastosowanie w różnych gałęziach przemysłu oraz w powszechnym stosowaniu w dniu codziennym. Wykorzystanie magnesów neodymowych płytkowych zapewniło między innymi zmniejszenie gabarytów systemów magnetycznych oraz ich wagę. Dodatkowo magnesy tego typu mogą również zostać wyposażone w dodatkowe powłoki ochronne, które pozwolą na ich pracę w znacznie wyższych temperaturach. Nawet do 200 stopni Celsjusza. Rodzaj magnesowania tego typu kształtu następuje wzdłuż najmniejszego wymiaru. Silne magnesy płytkowe są wykorzystywane przeważnie jako części różnego rodzaju silników elektrycznych w modelarstwie, do uchwytów w szafkach, zamknięciach mebli różnego typu. Małe magnesy płytkowe są również stosowane do magnesów na lodówkę itp. Ponieważ magnesy neodymowe posiadają najsilniejsze pole magnetyczne wśród wszystkich znanych nam magnesów, znalazły szerokie zastosowanie zarówno w powszechnym zastosowaniu oraz w wielu gałęziach przemysłu. W zależności od rodzaju magnesu oraz jego kształtu, stosuje się silne magnesy neodymowe w różnych branżach. Magnesy możemy znaleźć zarówno w branży komputerowej, AGD, czy tekstylnej. Zastosowanie magnesów neodymowych uzależniony jest przede wszystkim od zapotrzebowania na magnesy o silnym polu magnetycznym. Magnesy neodymowe pozwalają tworzyć różnego rodzaju produkty, bez których nie byłyby w stanie pracować ze względu na konieczność wykorzystania ich silnej indukcji magnetycznej, jak np. silniki kilka kształtów magnesu neodymowego : magnes neodymowe okrągłe - walcowemagnes neodymowy pierścieniowymagnes neodymowy płytkowyinne kształty na zamówienie np. gwiazdki, kuleczki...Różnego rodzaju magnesy neodymowe o nietypowych kształtach np. w postaci kul, jajek czy innych, uzależnione od konieczności wykonania czy zastosowania w danym urządzeniu itp. Magnes w owalnym kształcie walca jest bardzo charakterystycznym rodzajem magnesu neodymowego. Zazwyczaj namagnesowany osiowo, dlatego znajduje zastosowanie w wielu gałęziach przemysłu. Przeważnie neodymowe magnesy walcowe zbudowane są dodatkowo z powłoki wykonanej z niklu i miedzi, dzięki czemu są bardzo odporne na uszkodzenia oraz w żaden sposób nie zagrażają człowiekowi ani nie oddziałują na skórę i na organizm człowieka. Głównym zastosowaniem silnych magnesów neodymowych, walcowych są między innymi wykrywacze metali, filtratory oleju, zabawki, elementy biżuterii, elementy różnego rodzaju uchwytów drzwiczek, kabin oraz innych elementów. Malutkie magnesy neodymowe służą zwykle do produkcji różnego rodzaju magnesów na typu magnesy, zwykle pokryte są niklowaną powłoką ochronną, która dodatkowo ma zapobiegać przed korozją, rdzewieniem i szkodliwym wpływem czynników zewnętrznych. Chroni również skórę i organizm człowieka przed szkodliwym działaniem pierwiastków składowych magnesu. Silne magnesy pierścieniowe posiadają bardzo specyficzne właściwości magnetyczne. Posiadają bowiem kierunek namagnesowania prowadzący wzdłuż średnicy, dlatego magnes posiada bieguny rozłożone równomiernie przez połowę średnicy. Tak więc jedna połowa średnicy posiada biegun północny (N), a druga południowy (S). Maksymalna temperatura pracy tego typu magnesu, to przeważnie 80 stopni Celsjusza o ile nie zostanie wzmocniony dodatkową powłoką ochronną. Neodymowe magnesy pierścieniowe mają kształt walców z otworem w środku, dysków lub innych tego typu kształtów z otworem. Sprawdzają się idealnie tam, gdzie najlepszym sposobem montażu tego typu magnesu, jest śruba lub wkręt. Najczęściej magnesy pierścieniowe stosuje się do blokad drzwi, okien, zamków magnetycznych, mocowań różnego typu, wieszania szafek, półek oraz innych mebli. Ilość możliwości zastosowań magnesów neodymowych jest tak szeroka, że nie sposób wymienić każdego z nich. Począwszy od magnesów neodymowych płytkowych po uchwyty magnetyczne oraz nietypowe magnesy takie, jak na przykład NeoCube w postaci kulek magnetycznych czy zabawek magnetycznych, magnesy neodymowe tworzą bardzo interesującą grupę najsilniejszych magnesów o wysokiej mocy. Produkty tego typu znalazły szerokie zastosowanie w przemyśle (uchwyty magnetyczne), motoryzacji do różnego rodzaju oczyszczaczy oleju z opiłków metalowych (magnesy walcowe), modelarstwie przy produkcji wysokiej jakości silników bezszczotkowych do pojazdów i modeli samolotów (magnesy płytkowe). Silne magnesy neodymowe są również stosowane w branży meblarskiej do różnego rodzaju zamknięć i uchwytów mebli, szczególnie szklanych witryn. Coraz bardziej popularne również stają się magnesy do zapięć fartuchów, bluz, spodni oraz innych ubrań. Szczególnie istotne są magnesy stosowane przy produkcji ubrań medycznych (płaskie magnesy neodymowe walcowe i płytkowe). W internecie można znaleść wiele firm sprzedających mocne magnesy neodymowe. Poprzez popularne sklepy internetowe czy serwisy aukcyjne również można kupić wszelkiego rodzaju magnesy o dowolnym rozmiarze, kształcie, w dowolnej ilości. Wybierz nasz sklep internetowy z magnesami - znajdziesz w nim najlepsze ceny na rynku, różnorodne produkty, ilości to nietypowa rodzina metali ziem rzadkich oraz ich stopów, specjalnie przygotowanych w taki sposób, aby przyciągały do siebie przedmioty żelazne. Tak naprawdę magnesy to kawałki metali poddane działaniu silnego pola magnetycznego, posiadające własną indukcję magnetyczną. Wśród magnesów stosowanych powszechnie warto zwrócić szczególną uwagę na silne neodymowe magnesy, które często nazywane są magnesami stałymi lub trwałymi, z powodu ich niezwykle silnego pola magnetycznego. Najsilniejszego wśród wszystkich magnesów dostępnych na rynku neodymowy, jest magnesem posiadającym standardowo dwa bieguny magnetyczne - Północny (N) i Południowy (S) inaczej Magnes neodymowy to spiek w którego skład wchodzi neodym, żelazo i bor. Taki skład sprawia, że magnesy neodymowe należą do najsilniejszych magnesów stałych pod względem siły magnetycznej w stosunku do objętości. W rzeczywistości magnes neodymowy może utrzymać masę nawet 2000 razy większą niż jego własna. Z tego powodu Magnesy to nietypowa rodzina metali ziem rzadkich oraz ich stopów, specjalnie przygotowanych w taki sposób, aby przyciągały do siebie przedmioty żelazne. Tak naprawdę neodymowe magnesy to kawałki metali poddane działaniu silnego pola magnetycznego, posiadające własną indukcję magnetyczną. Wśród magnesów stosowanych powszechnie warto zwrócić szczególną uwagę na silne neodymowe magnesy, które często nazywane są magnesami stałymi lub trwałymi, z powodu ich niezwykle silnego pola magnetycznego. Najsilniejszego wśród wszystkich magnesów dostępnych na rynku neodymowy, jest magnesem posiadającym standardowo dwa bieguny magnetyczne - Północny (N) i Południowy (S) inaczej enes magnesu. Głównym składnikiem budulcowym każdego magnesu, jest - neodym. Magnesy neodymowe powstają w wyniku połączenia metali, które są silnie podatne na pole magnetyczne, czyli: wspomnianego neodymu, boru i żelaza (Nd2Fe14B).Produkcja silnych magnesów neodymowych, zwanych również magnesami neodymowymi spiekanymi, polega na prasowaniu sproszkowanych materiałów przy udziale bardzo mocnego pola magnetycznego, oddziałującego na wszystkie elementy magnesu. Następnie sprasowany magnes neodymowy musi przejść proces wypiekania w wysokiej temperaturze, w specjalnym piecu próżniowym lub wytworzonej specjalnie do tego celu atmosferze ochronnej. Dzięki takiemu rozwiązaniu magnes zyskuje bardzo silne pole magnetyczne przez co staje się najmocniejszym ze znanych magnesów produkowanych ziemi. Magnesy neodymowe pokrywane są dodatkowo ochronną warstwą, chroniącą przed korozją oraz by zniwelować aktywność chemiczną neodymu np. warstwą niklową, złotą, epoxydową także mieć na uwadze, że magnesy neodymowe, ze względu na swoją budowę, są podatne na rozkruszenie i uszkodzenia. Aby zwiększyć odporność każdego magnesu, stosuje się domieszkę dodatkowych domieszek metali. Dzięki temu można tworzyć magnesy odporne zarówno na uszkodzenie mechaniczne i wyższe temperatury do 230oC. Dlaczego jest to tak istotne? Ponieważ bez domieszki dodatkowych metali, zapewniających magnesom wytrzymałość, w wyższych temperaturach, czyli powyżej 80 stopni Celsjusza, neodymowy magnes traci swoje właściwości pamiętać, aby z magnesami neodymowymi obchodzić się bardzo ostrożnie. Dzięki swojej silnej indukcji magnetycznej, mogą spowodować uszkodzenie lub unieruchomienie niektórych syqMCL.
  • wbillfk93a.pages.dev/72
  • wbillfk93a.pages.dev/144
  • wbillfk93a.pages.dev/374
  • wbillfk93a.pages.dev/197
  • wbillfk93a.pages.dev/335
  • wbillfk93a.pages.dev/222
  • wbillfk93a.pages.dev/320
  • wbillfk93a.pages.dev/262
  • wbillfk93a.pages.dev/48
  • co można zrobić z magnesów neodymowych